Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Heliyon ; 9(10): e20466, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37810813

RESUMO

The persistent presence of organic pollutants like dyes in water environment necessitates innovative approaches for efficient degradation. In this research, we developed an advanced hybrid catalyst by combining metal oxides (Cu2O, Fe3O4) with UiO-66, serving as a heterogeneous Fenton catalyst for for efficient RB19 breakdown in water with H2O2. The control factors to the catalytic behavior were also quantified by machine learning. Experimental results show that the catalytic performance was much better than its individual components (P < 0.05 & non-zero 95% C.I). The improved catalytic efficiency was linked to the occurrence of active metal centers (Fe, Cu, and Zr), with Cu(I) from Cu2O playing a crucial role in promoting increased production of HO•. Also, UiO-66 served as a catalyst support, attracting pollutants to the reaction center, while magnetic Fe3O4 aids catalyst recovery. The optimal experimental parameters for best performance were pH at 7, catalyst loading of 1.6 g/L, H2O2 strength of 0.16 M, and reaction temperature of 25 °C. The catalyst can be magnetically separated and regenerated after five recycling times without significantly reducing catalytic activity. The reaction time and pH were ranked as the most influencing factors on catalytic efficiency via Random Forest and SHapley Additive exPlanations models. The findings show that developed catalyst is a suitable candidate to remove dyes in water by Fenton heterogeneous reaction.

2.
Chemosphere ; 313: 137352, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36436577

RESUMO

In this study, the kinetic degradation of several typical organic pollutants was performed on a synthetic electrode (Ti/SnO2-Sb/Co-ßPbO2). The surface structure and the electrochemical properties of the prepared electrode were investigated, confirming the successful preparation of the electrode using an electrochemical deposition method. The outer layer (Co-ßPbO2) played an important role in reducing the resistance of the electrode and improving its degradation efficiency. The results showed that indigo carmine (IC), p-nitrosodimethylaniline (RNO), and clothianidin (CLO) were effectively degraded within 20 min of electrolysis. Their degradation in the electrochemical process followed the first-order kinetic model with the degradation rate constant of IC being higher than that of RNO and CLO. This was proved by the difference in the reactivity of the target pollutants toward oxidizing radicals (i.e., •OH, SO4•-, and Cl•). Their second-order rate constant towards radicals were in the range of 109 - 1010 M-1 s-1 with the highest value being that for IC: k·OH,IC = 15.1 × 109 M-1 s-1 and [Formula: see text]  = 7.4 × 109 M-1 s-1. The study calculated the contribution of some oxidizing species, including direct electron transfer (DET), •OH, SO4•-, and other reactive oxygen species (ROS). Solution pH, supporting electrolyte, and water matrix affected the degradation efficiency of pollutants and the contribution of the oxidizing species. Br- and I- ions enhanced the degradation rate of organic pollutants, while Fe2+, HCO3-, and humic acid (HA) reduced it. In addition, the toxicity, total organic carbon (TOC) removal, mineralization current efficiency (MCE), energy consumption, recyclability and stability of the prepared electrode were studied, suggesting that the prepared Ti/SnO2-Sb/Co-ßPbO2 is a good candidate for treating organic pollutants using the electrochemical oxidation process.


Assuntos
Poluentes Químicos da Água , Água , Índigo Carmim , Titânio/química , Eletrodos , Poluentes Químicos da Água/química , Oxirredução
3.
Chemosphere ; 308(Pt 3): 136457, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36116628

RESUMO

This study investigated the kinetic degradation of methylene blue (MB) by a UV/chlorine process and its combination with other advanced oxidation processes. The ∙OH and reactive chlorine species (RCS: Cl∙, ClO∙, etc.) were the primary reactive species, which accounted for 56.7% and 37.6% of MB degradation at pH 7, respectively. The second-order rate constant of Cl∙ towards MB was calculated to be 2.8 × 109 M-1 s-1. When the pH increased from 3 to 7, kMB by ∙OH increased from 0.15 to 0.21 min-1 before being reduced to 0.11 min-1 at pH 11. kMB by RCS continuously reduced from 0.16 to 0.13 min-1 when the pH was increased to 11. Humic acid (HA), Br-, and Cl- inhibited the degradation with kMB in the order: kMB (in HA) < kMB (in Br-) < kMB (in Cl-). HCO3- increased kMB from 0.37 to 0.48 min-1. The experimental and modeling methods fit well, indicating the effectiveness of using Kintecus® in predicting concentrations of free radicals in complex water matrices. TOC removal was achieved at 60% after 30 min in a control process and it was strongly inhibited by the presence of HA, with 22% removal achieved at 5 mgc L-1 HA. UV/chlorine/electrochemical oxidation (UV/chlorine/EO) significantly improves kMB from 0.37 to 0.94 min-1 at a high current (240 mA), while UV/chlorine/H2O2 decreased kMB at a low concentration of 0.01 mM H2O2 (kMB decreased by 6.1%). The results indicate that the energy cost for UV irradiation was the main cost in MB treatment in both UV/chlorine and UV/persulfate (UV/PS) processes, accounting for 91% and 84%, respectively.


Assuntos
Poluentes Químicos da Água , Purificação da Água , Cloretos , Cloro , Halogênios , Substâncias Húmicas , Peróxido de Hidrogênio , Cinética , Azul de Metileno , Oxirredução , Raios Ultravioleta , Água , Purificação da Água/métodos
4.
RSC Adv ; 12(16): 9738-9743, 2022 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-35424953

RESUMO

Oxoberberine (OB, 2,10-dihydroxy-3,9-dimethoxy-8-oxo-protoberberine, artathomsonine), which was isolated from Artabotrys thomsonii, was shown to exhibit potent antioxidant activity in vitro, however that is the only reported evidence of the radical scavenging activity of this compound thus far. In the present study, thermodynamic and kinetic calculations were used to determine the free radical scavenging activity of OB against a range of biologically important species, under physiological conditions. In the first part the activity is calculated against the HOO˙ radical that is both biologically important and a reference radical for comparison. It was found that OB has high antiradical capacity against HOO˙ in both lipid medium and water at physiological pH with k overall = 1.33 × 105 and 1.73 × 106 M-1 s-1, respectively. The formal hydrogen transfer mechanism defined the activity in nonpolar environments, whereas in the aqueous solution the single electron transfer competes with the hydrogen transfer pathway. The results showed that, in lipid medium, the HOO˙ trapping capability of OB is better than typical antioxidants such as Trolox, BHT, resveratrol and ascorbic acid. Similarly, the activity of OB in water at pH 7.4 is roughly 19 and 7 times faster than those of Trolox and BHT, respectively, but slightly lower than the activities of resveratrol or ascorbic acid. In the second part, it was found that OB also exhibits high activity against other typical free radicals such as CH3O˙, CH3OO˙, CCl3OO˙, NO2, SO4˙-, DPPH and ABTS˙+ with k f ranging from 2.03 × 105 to 5.74 × 107 M-1 s-1. Hence, it is concluded that OB is a promising radical scavenger in the physiological environment.

5.
Chemosphere ; 298: 134197, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35276111

RESUMO

This study investigated the degradation of methylene blue (MeB), methyl orange (MeO), and rhodamin B (RhB) by the UV/Persulfate (UV/PS) process. The dye degradation in the investigated UV-based Advanced Oxidation Processes (UV/AOPs) followed the first-order kinetic model. The second-order rate constant of the dyes with •OH, SO4•-, and CO3•- were calculated and found to be: k•OH,MeB = 5.6 × 109 M-1 s-1, [Formula: see text]  = 3.3 × 109 M-1 s-1, [Formula: see text]  = 6.9 × 107 M-1 s-1; k•OH,MeO = 3.2 × 109 M-1 s-1, [Formula: see text]  = 13 × 109 M-1 s-1, [Formula: see text]  = 4.4 × 106 M-1 s-1; k•OH,RhB = 14.8 × 109 M-1 s-1, [Formula: see text]  = 5 × 109 M-1 s-1, [Formula: see text]  = 1 × 107 M-1 s-1. The steady-state concentrations of •OH and SO4•- (including other reactive species) were determined using both chemical probes and modeling methods (Kintecus® V6.8). In the UV/PS, the dye degradation depends on the pH of the solution with the order: kdye (at pH of 7) > kdye (in acidic conditions) > kdye (in alkaline conditions). The presence of water matrices had different impacts on dye degradation: 1) The HCO3- and Cl- promoted the degradation efficiency of one dye, but also inhibited the degradation of other dyes; 2) Humic acid (HA) inhibited dye degradation as it scavenged both •OH and SO4•-. The degradation of the dyes by UV/PS was also compared with the UV/Chlorine (UV/HOCl) and UV/H2O2 and it was established that: 1) In UV/PS and UV/HOCl, SO4•- and RCS contributed to dye degradation more than •OH, while •OH played a major role in dye degradation by UV/H2O2; 2) The calculated toxicity in UV/PS was the lowest probably due to the low toxicity of by-products; 3) For MeO and RhB, the UV/PS process is more beneficial for the total organic carbon (TOC) removal compared to that of the UV/HOCl and UV/H2O2 processes; 4) The UV/PS showed lower cost than the UV/HOCl and UV/H2O2 systems for MeO, and RhB degradation but higher cost for MeB removal.


Assuntos
Poluentes Químicos da Água , Purificação da Água , Corantes , Peróxido de Hidrogênio , Cinética , Oxirredução , Raios Ultravioleta , Poluentes Químicos da Água/análise , Purificação da Água/métodos
6.
ACS Omega ; 6(20): 13391-13397, 2021 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-34056486

RESUMO

Anthraquinones (ANQs) isolated from Paederia plants are known to have antidiarrheal, antitussive, anthelmintic, analgesic, anti-inflammatory, antihyperlipidemic, antihyperglycaemic, and antimicrobial activities. The antioxidant properties were also noted but not confirmed thus far. In this study, the superoxide and hydroperoxide radical scavenging activities of six ANQs were evaluated using a computational approach. The results suggest that the ANQs exhibit low HOO• antiradical activity in all environments, including the gas phase (k < 102 M-1 s-1). In contrast, the ANQs might exert excellent O2 •- radical scavenging activity, particularly in aqueous solution. The rate constants of the superoxide anion scavenging in water (at pH = 7.4) range from 3.42 × 106 to 3.70 × 108 M-1 s-1. Compared with typical antioxidants such as ascorbic acid and quercetin, the superoxide anion scavenging activity of ANQs is significantly higher. Thus, the ANQs are promising O2 •- radical scavengers in polar media.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...